
On-Stack Replacement in der
CACAO VM

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software & Information Engineering

eingereicht von

Robert Obkircher
Matrikelnummer 11807844

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Wien, 30. Oktober 2024
Robert Obkircher Andreas Krall

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

On-Stack Replacement in the
CACAO VM

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Robert Obkircher
Registration Number 11807844

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Vienna, October 30, 2024
Robert Obkircher Andreas Krall

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Robert Obkircher

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die ver-
wendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen, die
ohne substantielle Änderungen übernommen wurden, habe ich jeweils die von mir formu-
lierten Eingaben (Prompts) und die verwendete IT-Anwendung mit ihrem Produktnamen
und Versionsnummer/Datum angegeben.

Wien, 30. Oktober 2024
Robert Obkircher

v

Kurzfassung

Beim On-Stack-Replacement (OSR) geht es darum, dynamisch zwischen verschiedenen
Maschinencode-Versionen einer Funktion zu wechseln. CACAO VM ist eine zu Forschungs-
zwecken entwickelte Virtuelle Maschine für Java, die OSR für profilgesteuerte Optimierung
einsetzt. Diese Arbeit verbessert die unvollständige Implementierung, um die zweite Com-
pilerstufe besser zu nutzen und behebt mehrere andere Fehler. Die Auswertung erfolgt
durch Erweiterung der existierenden Tests und mithilfe der SpecJVM2008-Benchmark-
Suite. Letztere zeigt Leistungsverbesserungen, aber drei der Teilbenchmarks produzieren
noch ungültige Ergebnisse.

vii

Abstract

On-Stack Replacement (OSR) is a technique for dynamically switching between different
machine-code versions of a specific function. CACAO VM is a research Java Virtual
Machine that uses OSR for profile-guided optimizations. This work improves the incom-
plete implementation to make better use of the second-stage compiler and fixes multiple
unrelated bugs. We evaluate the result by extending the existing test suite and by running
the SpecJVM2008 benchmark suite. The latter shows improvements in performance, but
three of the sub-benchmarks still produce invalid results.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 The CACAO VM . 1
1.2 On-Stack Replacement . 2
1.3 Motivation . 3
1.4 Aim of the Work . 3

2 Related Work 5
2.1 CACAO . 5
2.2 On-Stack Replacement . 5

3 Background 7
3.1 Existing OSR Implementation . 7
3.2 Replacement Points . 8
3.3 It’s a Trap! . 8
3.4 How Compilers are Invoked . 9
3.5 Compiler2 . 10
3.6 Compiler2 Stack Frame Layout . 10

4 OSR Implementation 13
4.1 Float Registers . 13
4.2 Replacement Points . 13
4.3 Simplified SourceStates and Inlining 14
4.4 Lowering and Recovery . 15
4.5 Operand Stack after Side Effects . 15
4.6 Jumping into Optimized Code . 15
4.7 Callee Saved Registers . 16
4.8 Preventing Excessive Deoptimizations 16
4.9 Patching Callers . 17

xi

5 Various bug fixes 19
5.1 Debugging CACAO . 19
5.2 Basic Block Scheduling . 20
5.3 Handling of Dependencies . 20
5.4 Inlining . 20
5.5 LIR Changes . 21
5.6 Disabled Table and Lookupswitch . 21
5.7 Use after Free . 21
5.8 Phi Node Verification . 21
5.9 Constant Propagation . 21
5.10 Incorrect Spilling . 22
5.11 RegallocSpillAll Data Race . 22
5.12 New Instructions . 22
5.13 Throwing null . 22
5.14 Dominator Pass . 22

6 Evaluation 23
6.1 Methodology . 23
6.2 Results . 25
6.3 Conclusion . 27

7 Future work 29
7.1 OSR Improvements . 29
7.2 Compiler2 Improvements . 29
7.3 Breakpoints and Garbage Collection 30

A Detailed SpecJVM results 32
A.1 Individual Scores . 32
A.2 Normalized Comparison . 33

Übersicht verwendeter Hilfsmittel 35

Bibliography 37

CHAPTER 1
Introduction

1.1 The CACAO VM

CACAO is an open-source research Java Virtual Machine (JVM) that was developed at
TU Wien.[CHP, CRE, KG97]

A JVM is an abstract computing machine that loads and executes class files. A class file
is a binary format that describes the fields, methods, and other information of a class.
The instructions are encoded in stack-based bytecode with a predetermined maximum
operand stack size. They operate on primitive types (numeric, boolean, returnAddress)
and references (to class, array, and interface types). Values can also be stored in an
array of local variables, where long and double take up two consecutive slots. Method
invocation pops the arguments from the operand stack, and creates a new frame, where
they become the first local variables. The full specifications of the JVM and of the Java
programming language, which is compiled to it, can be found online[JSE].

Unlike other JVM implementations, CACAO relies on a compile-only approach, without
a bytecode interpreter. Consequently, the just-in-time (JIT) compiler was optimized for
compilation speed. When it compiles a method, it parses the bytecode into an array of
instructions. Then it replaces the operand stack with variables during stack analysis,
and it performs additional checks to verify the bytecode. Finally, it builds a control
flow graph, allocates registers, and generates machine code. To improve performance for
frequently executed code, various optional optimizations such as adaptive inlining were
implemented, which led to a need for on-stack replacement[SKT07].

After CACAO had been ported from C to C++, a second-stage compiler[Eis13] was
added with the main goal of making it possible to easily add new optimizations. It uses
a much more flexible graph-based intermediate representation (IR) and it increased the
complexity of on-stack replacement.

1

1. Introduction

From now on, we will refer to the original compiler as the baseline compiler and to the
optimizing compiler as compiler2. We use source state and execution state to distinguish
between the state of the virtual and physical machine.

1.2 On-Stack Replacement

int count() {
int i = 0;
while(i < 1000000) i += 1;
return i;

}

Figure 1.1: A naive translation may put i in a register or on the stack, while an optimized
one will not even do the loop.

On-stack replacement (OSR) refers to the replacement of executing machine code with
another version. This is usually accomplished by first pausing the thread at a convenient
location. Then the new code is looked up or generated. Unless it was tailored to this
location, the replacement mechanism may also need to adjust the stack and registers.
Finally, execution can resume at the new program counter.

The technique was initially developed for modifying and debugging optimized programs[HU94],
but it was later adopted by just-in-time (JIT) compilers to improve performance. It
enables quick start up times and excellent steady-state performance because expensive
optimizations can selectively be applied to frequently executed code. The profiling infor-
mation that is required to decide which code should be recompiled is usually collected
with counters in the unoptimized code. It can then also be used for profile-guided
optimization to specialize code to the actual workload of the program. Optimization is
typically triggered when a counter reaches a certain threshold. Recompilations may also
be triggered for adaptive optimization when the execution profile changes or if speculative
optimizations were performed based on transient program facts. Optimized code may
also use deoptimization for rare paths such as throwing exceptions.

The locations where OSR can be performed are usually limited to specific points to
simplify the transition, to limit amount of meta-information, and to allow for values
to be optimized away. In CACAO these locations are called replacement points and
the meta-information describes where values from the source state are located in the
native stack frame or registers. During replacement, the allocation information of the
two corresponding replacement points in both versions of the code is used to rewrite the
execution state. This is more flexible than generating custom code for the transition
because the target code is not tied to the source.

A replacement point that was created by the baseline compiler can be used for both
transitioning into and out of the code. This is possible because the code essentially uses

2

1.3. Motivation

the same set of values as the virtual machine. In compiler2, this is not the case. To make
it possible to transition away from the code, a special instruction takes all required values
as operands to ensure that they are actually computed. The other direction essentially
requires a special entrypoint that reads the source state.

1.3 Motivation
The current OSR mechanism in CACAO is incomplete and contains bugs. There are two
test cases that likely fail because of invalid deoptimization. Furthermore, the inlining
implementation[Sch20] that was recently added to compiler2 is not yet compatible with
OSR. Using countdown traps to switch from unoptimized to optimized code is also
severely limited. It is only possible at method entry, where the stack doesn’t need to be
modified, but long-running loops aren’t yet optimized.

1.4 Aim of the Work
The goal of this work is to improve the OSR mechanisms of CACAO. Deoptimization
should work more reliably and support inlining, and it should also become possible
to switch from unoptimized code to optimized code within loops. Correctness and
performance will be evaluated with tests and benchmarks.

3

CHAPTER 2
Related Work

2.1 CACAO
CACAO — A 64-bit JavaVM just-in-time compiler [KG97] details the initial design and
implementation of CACAO.

Adaptive Inlining and On-Stack Replacement in the CACAO Virtual Machine[SKT07]
describes the implementation of adaptive inlining for the baseline compiler. It uses
OSR to install optimized code, and to deoptimize when class loading breaks optimistic
assumptions. It also defined the terms source state, execution state, and replacement
point.

Compiler2 was introduced in Optimization Framework for the CACAO VM [Eis13], to
make it easier to add new optimizations. Unlike the baseline compiler it makes it possible
to easily define passes which operate on the two intermediate representations. Passes can
produce artifacts. For example the dominator pass computes one based on the simple
algorithm from[LT79], which is then used by scheduling passes.

Recently, Method Inlining in the Second Stage Compiler of the CACAO VM [Sch20] added
support for inlining to compiler2. It operates on the high-level intermediate representation
(HIR) and supports multiple heuristics. However, the implementation didn’t yet support
OSR.

2.2 On-Stack Replacement
Virtual Machines (VMs) often have dynamic features that require optimizations to be
performed at runtime. A Survey of Adaptive Optimization in Virtual Machines[AFG+05]
describes how VMs use selective- and feedback-directed optimizations to improve perfor-
mance. It mentions that OSR was initially developed for debugging in SELF[HU94] and
later adopted by HotSpot[PVC01] and others for dealing with uncommon branches.

5

2. Related Work

Truffle[WW12] is a language implementation framework based on GraalVM[WWW+13],
which optimizes interpreters via partial evaluation. Hot loops in AST interpreters get
OSR for free, while bytecode interpreters have a call to a polling function on back-edges.
Deoptimization is also possible because the interpreter state is tracked throughout the
compilation. Since speculations often fall back to similar states, deoptimization grouping
has been implemented to reduce the size of meta-data[DWM14].

In languages without structured control flow, it is difficult to efficiently detect long-running
loops. Lightweight On-Stack Replacement in Languages with Unstructured Loops[DD21]
argues that relying on back-edges may be a better choice than loop reconstruction. They
developed a language-agnostic OSR API in the Truffle Framework[WW12] and integrated
it with its LLVM bitcode interpreter.

The document OSR in the CLR[CLR] in the .NET Runtime repository describes various
design considerations that went into a fully functioning prototype implementation of
OSR for the CLR. It focuses on the transition from unoptimized to optimized code
because their optimizing compiler doesn’t do speculative optimization and thus doesn’t
require deoptimization. They discuss the requirements of an OSR implementation, how
and where transitions can be implemented, how they can be triggered by counters, and
whether optimized code should have one or multiple entrypoints. Most of the points in
the section about complications aren’t relevant because the JVM doesn’t have features
such as references to local variables.

With several implementations available to date, the engineering aspects of OSR in the
context of VMs are well understood. On-Stack Replacement, Distilled[DD18] aims to
make its applicability more general. They introduce a provably correct framework that
can generate compensation code that runs in constant time and enables bidirectional
transitions at most program locations. They evaluate an implementation in LLVM and
show that it can be used for debugging optimized code, but their ideas are more general.
There has also been previous work on OSR with LLVM[LH13, DD16].

JLLVM[JLL] is an LLVM-based best-effort implementation of a JVM that was developed
for a university course. It was extended with support for OSR as part of the bachelor
thesis Implementing On-Stack-Replacement in an LLVM-based JVM [Bö24].

6

CHAPTER 3
Background

This chapter gives an overview of the initial state of OSR in CACAO. Some details are
specific to the x86_64 architecture.

3.1 Existing OSR Implementation

The original baseline compiler already supported OSR with multiple optimization levels,
but since compiler2 was introduced, this has been disabled, and the baseline compiler
has only been used in two modes: one where it produces normal code, and another
one where it also emits countdown traps. Figure3.1 visualizes the different machine

Stub Code

compiler2
possible

Baseline Code
with Counters

compiler2
success

Compiler2 CodeBaseline Code

jit_compile

no

yes
after 100k

times

yes

no

deoptimize

Figure 3.1: Versions of Machine Code for a Function

7

3. Background

code versions for a function. Initially, a stub lazily triggers compilation upon the first
invocation, where a heuristic determines whether instrumented code should be produced.
Compiler2 is called eventually, if counters are hit often enough. However, in the initial
state only a single countdown trap was placed before the method prolog, because in that
case OSR is almost trivial, as no stack or register modifications are required. There was
no OSR of long-running loops. When compiler2 makes an assumption or can’t compile
an instruction, it emits a deoptimization instruction. Due to the heuristic this rarely
happens outside of test cases.

3.2 Replacement Points

A replacement point is represented by the following struct:

struct rplpoint {
u1 *pc;
methodinfo *method;
rplpoint *parent;
rplalloc *regalloc;
s4 id;
s4 callsize;
unsigned int regalloccount:20;
Type type:4;
unsigned int flags:8;
u1 *patch_target_addr;

};

The program counter pc can be used to look up the machine code that a replacement
point belongs to. Within that code, it is identified by the method and the instruction
id. The mapping between source and execution state is given by regalloc and
regalloccount. The parent would be required for inlining, but it was unused just
like the type. The flags indicate whether the replacement point is trappable, has a
countdown, is a deoptimization point, and whether it has an active trap. When patching
the caller, the return address is used to look up the replacement point before the invoke
instruction to get its callsize and patch_target_addr.

During code generation, the baseline compiler places replacement points and countdown
traps. However, there was a bug which meant that not all replacement points were
initialized correctly.

3.3 It’s a Trap!

CACAO uses signal handlers to implement certain exceptions and to trigger the compiler.
On x86_64 they are registered for SIGSEGV, SIGILL, and SIGFPE. They call the

8

3.4. How Compilers are Invoked

platform-independent function void trap_handle(int sig, void *xpc, void

*context), which in turn uses a machine-dependent function md_executionstate_read
to copy registers from the OS context into a struct executionstate_t.

Traps are implemented via a mov instruction that reads from the first page in memory,
which is marked PROT_NONE to trigger a SIGSEGV signal. The trap handler sets the
trap type to the address that was read and also extracts the contents of the instruction’s
target register. The following four types are relevant for OSR:

TRAP_COMPILER: When a class is linked, stub functions with traps of this type are
generated for each method. Whenever a stub is invoked, the trap handler reads information
about the function from the data segment, which is located right before the instructions,
and invokes the compiler if necessary. Afterwards, the call site is patched and execution
is resumed in the compiled code.

TRAP_PATCHER: The patcher is a way of patching baseline compiler code at runtime,
for example when a classref is resolved. However, the signal handler also contained
commented-out code that first tried to perform OSR to optimized code if an active
replacement point was found at this position.

TRAP_COUNTDOWN: When countdown traps are triggered the signal handler always called
a simplified version of the OSR mechanism, which relied on the fact that a countdown
trap before the method prolog didn’t have to modify the stack.

TRAP_DEOPTIMIZE: Deoptimizes the method that triggered the trap and initiates on-
stack replacement. First, the replacement point for the current program counter was
looked up. Then the top frame was read into a struct sourceframe_t, which is
similar to a frame in the JVM specification. Deoptimized code was requested, and the
target replacement point was looked up. Finally, the source frame was written back to the
executionstate_t according to the allocation information in that replacement point.
Inlined frames were not handled at all, and if the caller was Java code, its frame was
also read and written back unmodified. If countdown traps were enabled, then compiler2
rejected every method where it would have to deoptimize.

3.4 How Compilers are Invoked

As explained above, the baseline compiler is lazily triggered by stubs. It produces code
with a countdown trap before the method prolog. If that countdown trap reaches zero, the
signal handler tries to invoke compiler2, and if that fails it falls back to baseline but with
some optimizations and no traps. This is implemented in jit_get_current_code.

There is an implementation of multithreaded recompilation, but it doesn’t seem to be
used.

The function jit_compile_intern implements the baseline compiler. It currently
uses a heuristic to disable countdown traps if compiler2 likely can’t compile a method.

9

3. Background

There is a comment that this should be removed once deoptimization works and is not
triggered in 80% of cases.

The function jit_request_optimization and jit_invalidate_code are used
to invalidate code for a method. The latter contains a commented-out function call to
replace_activate_replacement_points, which would patch the replacement
point and flag them as active.

3.5 Compiler2
Compiler2 uses a graph-based IR where nodes are represented by classes. For example,
BinaryInst extends Instruction, which extends Value. Values keep a list of
users. Instructions also track operands (i.e. reverse users), dependencies, and reverse
dependencies. Dependencies specify the ordering of instructions with side effects within a
basic block. Basic blocks are delimited by a BeginInst and a corresponding EndInst
(branches to other blocks, return, and deoptimization instructions).

The compiler runs in multiple passes. First, the baseline compiler is invoked to parse
the method. Then the SSAConstructionPass iterates over the instructions of each
basic block to translate them. Variables are converted to static single assignment (SSA)
form, which means that operands are just pointers to the instruction that defined the
value. After various transformations, such as inlining and list scheduling, this high-level
intermediate representation (HIR) is lowered to a machine-specific low-level IR (LIR).

Compiler2 has the following HIR instructions related to OSR: ReplacementEntryInst
indicates a point where the method can be entered through OSR. AssumptionInst
and DeoptimizeInst are used for conditional and unconditional deoptimization. A
SourceStateInst essentially reads the state that the virtual machine would have at a
certain point. It takes all values as inputs, which would be in local variables or on the
operand stack of the JVM. It must also have a dependency on the previous instruction
with a side effect.

The purpose of the SourceStateAttachmentPass is to assign a SourceStateInst
to each SourceStateAwareInst. It depends on the ListSchedulingPass and

iterates over the instructions of each basic block in order. After the BeginInst and
instructions with side effects, the source state changes.

When HIR is lowered to LIR, each SourceStateAwareInst may optionally create
a MachineReplacementPointInst with the dependencies from its assigned source
state. The SourceStateInst itself isn’t lowered. After machine code has been emitted,
the rplpoint structs are created for each MachineReplacementPointInst.

3.6 Compiler2 Stack Frame Layout
Compiler2 uses a relatively simple way of managing stack slots. Each of them has a fixed
size of 8 bytes and is identified by an index. The StackSlot class is used for parameters

10

3.6. Compiler2 Stack Frame Layout

in the MachineMethodDescriptor, ManagedStackSlot for everything else.

The following table gives an overview of how stack slots are addressed. This was relevant
for generating the allocation info of replacement points.

Class Architecture get_stackslot_register get_stackslot_offset

StackSlot Aarch64 FramePointer index*8, index includes +2
x86_64 non-leaf FramePointer (index+2)*8
x86_64 leaf StackPointer (index+1)*8

ManagedStackSlot Aarch64 StackPointer index*8
x86_64 non-leaf StackPointer index*8
x86_64 leaf StackPointer -(index+1)*8

For StackSlot, which is used for reading arguments, +2 is added to the index because
the top values are the return address and the saved base pointer.

For x86_64 RSP is not moved in leaf methods, so ManagedStackSlots have a negative
offset (the stack grows towards smaller addresses).

Stackframe layout:

Offset Value
arguments

*(basesp) return addr
*(basesp-8) frameptr (only present if not leaf, FramePointer points here)

Aarch64 padding for 16 byte alignment
saved int regs
saved flt regs
managed stack slots
(StackPointer points here if not leaf method)

11

CHAPTER 4
OSR Implementation

This chapter describes the OSR implementation roughly in chronological order. The initial
changes were focused on deoptimization and inlining, then the transition to optimized
code was added, and finally looping between them had to be prevented. Some smaller
fixes, mostly regarding compiler2 HIR construction, are not described in detail.

4.1 Float Registers

The machine-dependent code for Linux x86_64 didn’t copy float registers between the
OS context and the executionstate_t struct.

4.2 Replacement Points

Replacement points are identified by an integer instruction id, assigned by the bytecode
parser, and a pointer to their methodinfo to disambiguate inlined ones. Both values
are now grouped together in a new struct rplpid to pass them around more easily
and to conveniently print them.

An enum Position { BEFORE_BB, BEFORE_CALL, AFTER } was added to avoid
ambiguity between consecutively numbered instructions. Replacement points are now
placed before the first instruction in the first basic block, before the first instruction in a
block with control flow merges, before invoke instructions, and after instructions with
side effects. This ensures that deoptimization is possible everywhere.

The baseline compiler separately counts and initializes replacement points. However, the
procedure that later sets their program counters was not called the correct number of
times, leaving them potentially uninitialized.

13

4. OSR Implementation

SourceStateInst

SourceStateInst

INVOKEInst

SourceStateInst

DeoptimizeInst

source_state, pre-assigned

source_state,
assigned after scheduling

dependency

parent

parent

Figure 4.1: Compiler2 HIR representation of inlined instructions.

4.3 Simplified SourceStates and Inlining

Previously, source state instructions were treated as free-floating metadata. They required
special treatment during inlining and when replacing operands. Now they are treated
more like normal INVOKE* instructions. For example, they are simply written to the
variable that represents the global state change, to create their dependency edges.

List scheduling now schedules SourceStateInst as early as possible. This guarantees
that when the SourceStateAttachmentPass iterates over the instructions in a basic
block, it can now simply change the current source state whenever it encounters a new
one, instead of having to inspect reverse dependencies of instructions with side effects.
This also makes it easier to keep the source state after inlined functions, so less progress
is lost when deoptimizing after side-effect-free inlined computations.

Some INVOKE* instructions previously never received a source state. This was fixed,
but in addition they are now pre-assigned during SSA construction. That way, the
inlining pass can easily determine and set the parent source state without having to run
the SourceStateAttachmentPass. A visualization of this can be seen in Figure4.1,
where the solid arrows represent direct pointers, and the dashed ones are some of the
dependency edges. Note that there is no BeginInst because redundant basic blocks
are coalesced.

14

4.4. Lowering and Recovery

The inlining implementation also had multiple places where SourceStateInst was
treated specially. For example, when leaves of the local scheduling graph were collected
and when the inlined invoke instruction was removed. A function, which replaced a value
everywhere except in SourceStateInst, and the creation of a dummy source state,
are also no longer necessary.

4.4 Lowering and Recovery

When a SourceStateAwareInst such as DeoptimizeInst is lowered, it creates a
MachineReplacementPointInst. This was modified to also include the operands
from the parents of the SourceStateInst. Currently, this is done without deduplicat-
ing operands, which simplified the implementation, but requires more work at runtime,
because values potentially have to be duplicated in multiple registers or stack slots.

Constants had to be explicitly moved into virtual registers, otherwise it was not possible
to get their location later.

When replacement points are recovered after compiler2 generated machine code, we
look at every MachineReplacementPointInst and create a rplpoint for each
SourceStateInst and for each parent. They contain allocation info of values, whose
offsets are now encoded relative to the stack or frame pointer register. They are de-
termined in a backend-specific way for x86_64 and aarch64. For this to work, the
StackSlotManager also had to be adjusted. Some details can be found in Section3.6.

4.5 Operand Stack after Side Effects

When the baseline compiler parses instructions, it translates operand stack slots to
variable indices. To preserve the operands for OSR, the indices were already copied into
an array after each instruction with side effects. However, there were places where the
destination of an instruction was updated, but the values in the arrays weren’t.

Updating them fixed the compiler2 test case Permut, which previously threw an exception
because an array index was mapped incorrectly during deoptimization.

4.6 Jumping into Optimized Code

Previously, countdown traps were only emitted before the method prolog. In this special
case, only the program counter has to be updated, and the caller is patched to use the
new code for future invocations. Because no modification of the stack is necessary, and
later deoptimizations must not re-run the prolog, we no longer create replacement point
info in this case.

To support OSR within long-running loops, a new type of countdown traps was introduced.
It is placed with replacement points at control flow merges. This guarantees that every

15

4. OSR Implementation

loop contains at least one of them, but only placing them at back edges would be more
optimal.

The signal handler for this type of countdown trap first tries to look up a cached
version of the code. Otherwise it synchronously invokes compiler2, passing the associated
replacement point as a parameter. If that fails, the baseline compiler is re-invoked to
generate a version of the code without countdown traps. Unlike compiler2, the baseline
compiler doesn’t need to know the replacement point, because it supports all of them.

For the actual replacement, the top activation record is popped and then restored with
the info from the target code. Currently, the activation record must only contain a single
JVM stack frame, or in other words, the baseline compiler can’t place countdown traps
in inlined code.

4.6.1 Compiler2 Changes

A replacement point id was added to compiler2 as an optional parameter. If it is present,
a specialized version of the code will be generated, where the SSAConstructionPass
generates a branch from the entrypoint to the correct basic block. Replacement points
in the middle of basic blocks aren’t supported because it only makes sense to place
countdown traps at loop back edges (or control flow merge point), which by definition
are at basic block boundaries. In the future this could potentially even be extended to
allow a non-deterministic switch to multiple entrypoints.

LOAD instructions which were previously only used for parameters, can now optionally
take a ReplacementEntryInst as an operand, which is lowered in such a way that a
replacement point can later be generated, which describes where values are expected.

4.7 Callee Saved Registers
Compiler2 didn’t save registers for leaf methods. For other methods they were saved
to managed stack slots instead of the location that the replacement code expects. This
was fixed by modifying the StackSlotManager to be aware of slots for callee saved
registers.

Another issue was that the replacement code expects registers to be saved in a certain
order and then just stores how many of them are saved. For now, this was solved by
having compiler2 potentially save more registers than necessary. Storing a bitset instead
of just a count would be another solution.

4.8 Preventing Excessive Deoptimizations
One of the changes to the replacement mechanism was that we no longer read and restore
the caller. Only the topmost activation record is popped, which may contain multiple
inlined source frames.

16

4.9. Patching Callers

This introduced a performance problem, where a handful of methods deoptimized 110
million times when executing SpecJVM. The problem was that previously, pushing a
stack frame automatically patched the call site, but now it had to be patched explicitly
to use the baseline version of the code after a deoptimization occurred.

4.9 Patching Callers
struct vftbl_t {

methodptr *interfacetable[1];
/* classinfo, lengths, subtype info, ... */
methodptr table[1];

/* use interfaces()[-i] instead of interfacetable[-i] */
methodptr **interfaces() { return (methodptr**) this; }

};

Patching the caller only worked in debug builds, but in release builds the interfaces
weren’t updated, which resulted in billions of simple countdown trap hits and made
xml.validation 35 times slower than baseline. The problem was that the pointers to
methodptr arrays for interfaces are stored in memory right before the virtual function
table itself. They were accessed through a negative index into the interfacetable
field, which was optimized away by the C++ compiler. The solution was to use the cast
shown in the interfaces() method.

17

CHAPTER 5
Various bug fixes

The increased usage of compiler2 uncovered many bugs. This chapter first gives a short
overview on how to debug CACAO and then it describes bugs roughly in the order they
were fixed.

5.1 Debugging CACAO

5.1.1 Configure Options

The options --enable-logging and --enable-disassembler allow debug print-
ing. In a debugger --disable-optimizations may be helpful. With --enable-
statistics various statistics are written to a file. Assertions (--enable-debug) are
already enabled by default.

5.1.2 Runtime Options

• Logger prefix and level:-XX:DebugName="compiler2"-XX:DebugVerbose=2.
When debugging large programs like SpecJVM, it may be easier to write directly to
cacao::dbg()<< "value" because normal logging can produce a lot of output.

• Visualize SSA: -XX:+SSAPrinterPass

• Show baseline IR and assembly: -sia (search OPT_SHOW for details). Usu-
ally, this results in too much output. To debug compiler2, it is faster and sim-
pler to just recompile with show_method(jd, SHOW_CODE); at the start of
SSAConstructionPass::run.

• Compiler2 inlining: -XX:+InliningPass

• Initial value for countdown traps: -XX:InitialHitCount=42

19

5. Various bug fixes

5.1.3 GDB Configuration

Since CACAO uses a lot of signals, it is useful to ignore some of them (i.e. in .gdbinit).
If an unexpected segmentation fault occurs with these options, the debugger will still
break once the trap handler calls abort.

handle SIGSEGV SIGILL SIGPWR SIGXCPU SIGFPE SIG62 noprint nostop

5.2 Basic Block Scheduling

The first issue with basic block scheduling was that the usage of an unordered_map
didn’t guarantee that the initial basic block was scheduled first.

The second one was that unreachable blocks were scheduled. This caused issues because
the SourceStateAttachmentPass only propagated the state starting from the initial
basic block and thus didn’t assign any to the dead ones, which triggered an assertion
when they were lowered. Because of dead loops, it wasn’t enough to just ignore basic
blocks with zero predecessors. Instead, the pass now recursively collects all basic blocks
that are reachable from the initial one.

5.3 Handling of Dependencies

There were multiple bugs while updating the operands and dependencies of instructions.
For example, SourceStateInst contained lists of pointers to instructions, but std::
remove was used incorrectly because it doesn’t resize the container. Now the code uses
the erase–remove idiom.

There were also inconsistencies in whether only one or all occurrences of a value should
be replaced or removed, and sometimes the lists with the reverse edges weren’t updated
correctly. In some places iterator invalidation could have occurred. For example, when
iterating over reverse dependencies of an instruction and calling a function to remove it,
a copy of the vector was necessary.

5.4 Inlining

If code becomes unreachable because an inlined method deoptimizes, the basic block
predecessors are now cleaned up properly. Dead code that used the return value will no
longer fail to verify, and unreachable invoke instructions will no longer be expanded.

Determining the local scheduling graph when coalescing basic blocks and replacing
dependencies when splitting a basic block now run in linear instead of exponential time.

20

5.5. LIR Changes

5.5 LIR Changes
The few DstSrc operands were replaced with separate ones because they triggered
assertions about LIR not being in SSA form.

5.6 Disabled Table and Lookupswitch
Tableswitch is not lowered at the moment. Lookupswitch was lowered incorrectly, so it
was also disabled. The issue is that predecessors of machine basic blocks are set based
on the HIR predecessors. It was likely implemented this way because the order has to
match the order of phi operands. But because Lookupswitch was lowered as a series of
if-else blocks, it created many new blocks, whose predecessor was always set to the basic
block of the HIR instruction. This resulted in invalid register allocation and caused an
issue in the SourceStateAttachmentPass, which assumes that blocks with multiple
predecessors always have their own source state. It also triggered an assertion in a
function get_edge_block, which is used while splitting critical edges.

5.7 Use after Free
Calling System.exit(); in Java while compiler2 was running on another thread
triggered a use-after-free bug. The problem was that the NativeOperandFactory
was a global variable whose destructor deallocated registers such as RAX while they were
still in use.

5.8 Phi Node Verification
The SSA construction for OSR sometimes creates unreachable basic blocks. This caused
the verification of phi nodes to fail, which simply checked that the number of arguments
is non-zero. To allow dead code, it now compares it to the number of basic block
predecessors instead.

5.9 Constant Propagation
There were crashes when propagating divisions by zero and phi nodes of constant
references (to strings). There were also two bugs when computing the number of constant
operands:

The first one was introduced in 2014, one year after constant propagation was implemented,
when the list of users of an instruction was changed to a set. This meant that multiple
occurrences of the same constant in the operands of a single instruction were only counted
once and prevented propagation.

The second one was more serious because it tried to propagate instructions that weren’t
constants. After replacing a phi node with one of its constant inputs, the number of

21

5. Various bug fixes

constant operands was incremented for each user of that constant when it should have
been incremented only for the users of the phi. This could only happen for phi nodes
because other instructions were replaced by new constants without other users. The
solution was to increment before replacing.

5.10 Incorrect Spilling
Spill locations are recorded first and inserted later. However, if multiple spills occurred
before one instruction, there was a decrement --i inside the loop when the correct code
would have been i - 1. Positions were also encoded as iterators in such a way that a
spill before the first instruction in a MachineBasicBlock would have been inserted at the
end of the previous one. This is now encoded in a way that is easier to understand. It is
still unclear if normal spills and spills from phi nodes are handled correctly in all cases.

5.11 RegallocSpillAll Data Race
Compiler2 set the RegallocSpillAll option of the baseline compiler to true and
restored the original value at the end without any synchronization. This interfered with
concurrent invocations during SpecJVM benchmarks. Since the option is only relevant
for debug builds, the modifications were simply removed.

5.12 New Instructions
ICMD_IREMPOW2 and ICMD_IDIVPOW2 were added because they were used in tests.
For now, they are simply translated to REMInst and DIVInst instead of more efficient
ones like shift.

5.13 Throwing null
Previously, throw null essentially caused an infinite loop because the signal handler
didn’t do anything. Now it correctly throws a NullPointerException.

5.14 Dominator Pass
The dominator pass implements the simple version of the algorithm[LT79] proposed by
Lengauer and Tarjan. However, the call to Compress inside Eval was simply missing,
which resulted in non-deterministic miscompilations. A verify method was added to
the pass to ensure that the returned dominators are in fact dominators.

22

CHAPTER 6
Evaluation

6.1 Methodology
To evaluate the correctness of the changes, the CACAO test suite was expanded. Ad-
ditionally, the SpecJVM2008 benchmark suite was used to quantify the performance
impact and to verify that real-world code produces correct outputs.

6.1.1 JUnit Tests

Compiler2 already had a JUnit-based test suite. To run them, CACAO was configured
with GNU Classpath and with OSR/compiler2 enabled.

The following changes were made to JUnit tests:

• ArrayLength: test that triggered invalid assertion in SourceStateAttachmentPass

• CalleeSaved+: use many variables to test callee-saved registers with: baseline/-
compiler2, leaf/non-leaf, with/without deoptimization, with/without optimization

• CallerSaved: enable previously disabled tests

• Deoptimize+: some tests for debugging deoptimization

• DeoptimizeInlined+: some tests for debugging deoptimization with -XX:+
InliningPass enabled.

• Idiv: test new ICMD_IDIVPOW2 compiler2 instruction

• InliningTests: disabled a test that caused a segmentation fault in the baseline
compiler

• Irem: test new ICMD_IREMPOW2 compiler2 instruction

23

6. Evaluation

• LookupSwitch-: added switch that was miscompiled, but disabled the entire file

• Min: added if/else variant which triggered an assertion

• OsrOptimize+: test optimization of long-running loops

• SpecJvmBugs+: tests for some of the bugs that were triggered by SpecJVM

• Throw: added test for throwing null

The class org.cacaojvm.compiler2.test.Compiler2Test serves as the base
class for all test cases. It contains native methods to compile and execute a method with
a specific compiler and to access statistics. It also has a method testResultEqual,
which compares the result of running a method with each compiler. However, if the
variable arguments didn’t match the descriptor, the test passed immediately because
both sides threw an IllegalArgumentException. A special check was added to guard
against mistakes when writing tests.

In order to reliably trigger deoptimization at a specific point, we added a new method:

public static void deoptimizeHere() {}

The method itself doesn’t do anything, but SSAConstructionPass was modified to
emit a deoptimize instruction whenever someone calls it in debug builds. That happens
in the new JUnit test DeoptimizeInlined.java, which contains among others the
following test, where in an attempt to trigger assertions, the expressions were chosen in
such a way that the local variables, the operand stack, and the arguments have distinct
types:

@Test
public void test3() {

testResultEqual("operands", "(IJFD)D", 5, 8L, 3.1f, 2.2d);
}
static double operands(int i, long j, float f, double d) {

// before call to deopt:
// locals: 0:I, 1:L, 3:F, 4:D
// stack: I, L, F, D
// param: F, D
return d + (f * (j + i * deopt(3.14f, 1000.0) * 11));

}
static int deopt(float x, double y) {

// locals: 0:F, 1:D
Compiler2Test.deoptimizeHere();
return (int) (x + y);

}

24

6.2. Results

However, this approach has multiple drawbacks. The first one is that javac could
theoretically produce different bytecode in the future. The second one is that this test
was created while fixing a problem with inlining, but there is no check to confirm that
deopt has in fact been inlined into operands. During development this was manually
verified with a debugger. Third, this approach only works for non-leaf methods. To test
deoptimization with callee-saved registers in leaf methods, the currently unimplemented
throw operation was used.

6.1.2 SpecJVM2008

The second approach was to execute the SpecJVM 2008[SPE] benchmark suite. A script
was created to compile CACAO with and without OSR and to run SpecJVM with both
of them and with OpenJDK. For the results below, it was invoked with no arguments.

bash doc/on_stack_replacement/specjvm.sh

The tests were executed on a 6-core i7-9750H CPU with 14GB heap space. Hyper-
threading and turbo-boost were both disabled to give more consistent results and to
avoid overheating of the laptop. It uses OpenJDK 7 built by Azul and was executed
inside an Ubuntu 18.04 docker on an Ubuntu 24.04 host.

6.2 Results

Both previously failing compiler2 tests were fixed (Fact, Permut). The new JUnit tests
helped to detect and fix bugs during development. The entire CACAO test suite passes
with and without inlining.

For SpecJVM, all but three benchmarks are passing. With compiler2 enabled sunflow
and compiler.compiler produce invalid results, and derby doesn’t seem to terminate.
It is difficult to tell whether this is due to OSR or unrelated bugs.

Figure6.1 shows the comparison between CACAO with and without OSR, and the Azul
Zulu JDK 7. The impact of OSR can be seen in Figure6.2. The serial and xml
benchmarks saw the largest improvement of +24.76% and +22.14% ops/m respectively,
while the startup performance got slightly worse.

According to the collected statistics, there were 3122 compiler2 calls in total, out of which
3032 were successful. In 93 cases, the baseline compiler was used, but this also includes
code for deoptimizations. 6686 methods didn’t get countdown traps because they were
skipped due to the heuristic. The numbers might not be entirely accurate because the
counters don’t use atomic increments.

Table6.1 shows where and to which version of the code optimizations happened. Sur-
prisingly, the vast majority of them happens at method entry. This is likely because the
heuristic often rejects more complex methods.

25

6. Evaluation

0 100 200 300 400 500 600 700 800
ops/m, geometric mean of sub-benchmarks

xml

sunflow

startup

serial

scimark

mpegaudio

derby

crypto

compress

compiler

105.11

27.13

20.61

56.63

78.48

80.68

153.59

86.06

8.99

27.84

16.52

56.99

73.87

48.08

80.15

153.92

121.81

810.3

114.03

27.69

250.61

129.47

188.27

524.5

320.36

254.44

599.1

N/A

N/A

N/A
SpecJVM2008 Scores

CACAO OSR
CACAO Baseline
Zulu 7.56.0.11

Figure 6.1: Comparison of SpecJVM2008 scores

At method entry From within method Target
80 10 to baseline, uncached

470 9 to baseline, cached

2954 78 to compiler2, uncached
8071 0 to compiler2, cached

11575 97 total

Table 6.1: Number of on-stack replacements

26

6.3. Conclusion

0 20 40 60 80 100 120
percentage of ops/m relative to baseline

xml

sunflow

startup

serial

scimark

mpegaudio

derby

crypto

compress

compiler

122.14

97.45

124.76

99.37

106.24

100.66

99.79

N/A

N/A

N/A

SpecJVM2008 Score with OSR relative to Baseline

Figure 6.2: Impact of OSR on SpecJVM2008 scores

There were a total of 185 deoptimizations. 83 were uncached (2.7% of 3032 optimized
methods) and in 102 cases the target was already cached.

6.3 Conclusion
A basic version of OSR was implemented and tested. This uncovered a number of
unrelated issues with the new compiler, most of them were fixed. Inlining was simplified
and works in simple cases, but it remains disabled by default because larger programs
like SpecJVM still trigger assertions and crashes. Overall, OSR results in performance
improvements for benchmarks.

27

CHAPTER 7
Future work

7.1 OSR Improvements

Development has been focused only on x86_64. Although aarch64 has been taken into
account for cases such as the location of stack slots, it looks like the code for callee-saved
registers hasn’t been compiling since before the start of this work.

There might also be some edge cases that aren’t covered by the current implementation,
for example, with rare values such as returnAddress. Also, the allocation info of
replacement points at call sites is currently never used and could be omitted.

When compiler2 specializes a method to a replacement point, it currently reads all values
from the stack and then does an unconditional branch to the correct basic block. It would
be better to also have a conditional branch that isn’t taken, to the original entrypoint, to
keep that code alive. That would then allow constant propagation to replace phi nodes
where the only different non-constant value is coming from the unconditional branch.

When lowering source states, the operands could be deduplicated. If multiple variables
share the same value, it is slightly inefficient to require both of them as separate operands.

There has also been almost no work done on performance. Once compiler2 supports
compiling most methods, multiple variations of OSR could be tried to determine which
one works best in practice.

7.2 Compiler2 Improvements

Compiler2 still has many unsupported instructions. Table- and lookupswitch were
disabled. There are also problems with integer division and modulo because they get
dead code eliminated and reordered even if they could potentially throw an exception.

29

7. Future work

Dead code caused quite a few problems during development. Since the new solution for
scheduling basic blocks completely ignores unreachable ones, it should now be easy to
add constant evaluation of branches.

Inlining still doesn’t work reliably for SpecJVM. Also, the budget calculation for the
knapsack heuristic might be incorrect, and the implementation for guarded inlining is
incomplete.

7.3 Breakpoints and Garbage Collection
CACAO doesn’t support debugging Java code right now, but breakpoints would be
conceptually very similar to replacement points. If a breakpoint was placed into optimized
code, there would have to be a way to force it to return to the unoptimized variant.

For garbage collection, CACAO currently uses Boehm GC by default. There is also an
old implementation of a precise garbage collector, but it doesn’t work anymore. Precise
garbage collectors have somewhat similar requirements to OSR. They usually require
GC safe points where execution can be paused and where every reference on the stack
can be recovered. In the past, this was implemented with replacement points. With
compiler2, these two concepts would be slightly different, though. A replacement point
forces a certain set of values to be live, while a GC safe point just needs to know about
references to heap allocations. Also, if optimizations such as scalar replacement were
implemented, then replacement points could require additional code that allocates an
object right before deoptimizing.

30

APPENDIX A
31

A. Detailed SpecJVM results

Detailed SpecJVM results

A.1 Individual Scores

0 200 400 600 800 1000 1200 1400
ops/m

xml.validation

xml.transform

sunflow

startup

serial

scimark.sparse.small

scimark.sparse.large

scimark.sor.small

scimark.sor.large

scimark.monte_carlo

scimark.lu.small

scimark.lu.large

scimark.fft.small

scimark.fft.large

mpegaudio

derby

crypto.signverify

crypto.rsa

crypto.aes

compress

compiler.sunflow

compiler.compiler

184.03

60.03

27.13

20.61

127.07

35.18

167.64

38.85

16.86

125.56

11.31

223.1

38.51

78.48

53.4

222.63

44.18

153.59

71.71

151

49.05

8.99

27.84

16.52

126.75

35.21

168.37

39.02

17.09

122.31

11.49

234.51

38.43

73.87

48.08

54.29

211.49

44.84

153.92

74.64

198.8

1244.77

527.48

114.03

27.69

250.61

217.85

39.6

206.46

46.29

332.2

1011.9

12.29

504.59

59.49

188.27

524.5

555.87

532.71

111.03

254.44

344.77

1041.05

N/A

N/A

N/A
SpecJVM2008 Scores

CACAO OSR
CACAO Baseline
Zulu 7.56.0.11

32

A.2. Normalized Comparison

A.2 Normalized Comparison

0 20 40 60 80 100 120
percentage of ops/m relative to baseline

xml.validation
xml.transform

sunflow
startup

serial
scimark.sparse.small
scimark.sparse.large

scimark.sor.small
scimark.sor.large

scimark.monte_carlo
scimark.lu.small
scimark.lu.large
scimark.fft.small
scimark.fft.large

mpegaudio
derby

crypto.signverify
crypto.rsa
crypto.aes
compress

compiler.sunflow
compiler.compiler

121.87
122.39

97.45
124.76

100.25
99.91
99.57
99.56
98.65

102.66
98.43

95.13
100.21

106.24

98.36
105.27

98.53
99.79

96.07

N/A

N/A

N/A
SpecJVM2008 Score with OSR relative to Baseline

33

Übersicht verwendeter Hilfsmittel

35

Bibliography

[AFG+05] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter
Sweeney. A survey of adaptive optimization in virtual machines. Proceedings
of the IEEE, 93:449–466, 02 2005.

[Bö24] Markus Böck. Implementing on-stack-replacement in an llvm-based jvm.
Bachelor’s thesis, TU Wien, 2024.

[CHP] CACAO VM homepage. http://www.cacaojvm.org/, last accessed on
2024-10-05.

[CLR] On stack replacement in the CLR. https://github.com/dotnet/
runtime/blob/9866d1285dcf2448c966edbf02b8c17585d430fb/
docs/design/features/OnStackReplacement.md, last accessed
on 2024-10-05.

[CRE] CACAO VM source code. https://bitbucket.org/cacaovm/
cacao/, last accessed on 2024-10-05.

[DD16] Daniele Cono D’Elia and Camil Demetrescu. Flexible on-stack replacement
in llvm. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization, CGO ’16, page 250–260, New York, NY, USA,
2016. Association for Computing Machinery.

[DD18] Daniele Cono D’Elia and Camil Demetrescu. On-stack replacement, distilled.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, page 166–180, New York,
NY, USA, 2018. Association for Computing Machinery.

[DD21] Matt D’Souza and Gilles Duboscq. Lightweight on-stack replacement in lan-
guages with unstructured loops. In Proceedings of the 13th ACM SIGPLAN
International Workshop on Virtual Machines and Intermediate Languages,
VMIL 2021, page 4–13, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[DWM14] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. Spec-
ulation without regret: reducing deoptimization meta-data in the graal

37

http://www.cacaojvm.org/
https://github.com/dotnet/runtime/blob/9866d1285dcf2448c966edbf02b8c17585d430fb/docs/design/features/OnStackReplacement.md
https://github.com/dotnet/runtime/blob/9866d1285dcf2448c966edbf02b8c17585d430fb/docs/design/features/OnStackReplacement.md
https://github.com/dotnet/runtime/blob/9866d1285dcf2448c966edbf02b8c17585d430fb/docs/design/features/OnStackReplacement.md
https://bitbucket.org/cacaovm/cacao/
https://bitbucket.org/cacaovm/cacao/

compiler. In Proceedings of the 2014 International Conference on Principles
and Practices of Programming on the Java Platform: Virtual Machines,
Languages, and Tools, PPPJ ’14, page 187–193, New York, NY, USA, 2014.
Association for Computing Machinery.

[Eis13] Josef Eisl. Optimization framework for the CACAO VM. 2013.

[HU94] Urs Hölzle and David Ungar. A third-generation SELF implementation: Rec-
onciling responsiveness with performance. SIGPLAN Not., 29(10):229–243,
oct 1994.

[JLL] Jllvm. https://github.com/JLLVM/JLLVM, last accessed on
2024-10-30.

[JSE] Java SE specifications. https://docs.oracle.com/javase/specs/
index.html, last accessed on 2024-10-05.

[KG97] Andreas Krall and Reinhard Grafl. CACAO — a 64-bit JavaVM just-in-time
compiler. Concurrency: Practice and Experience, 9(11):1017–1030, 1997.

[LH13] Nurudeen A. Lameed and Laurie J. Hendren. A modular approach to
on-stack replacement in llvm. SIGPLAN Not., 48(7):143–154, March 2013.

[LT79] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–141,
January 1979.

[PVC01] Michael Paleczny, Christopher Vick, and Cliff Click. The java hotspot server
compiler. 01 2001.

[Sch20] Tobias Schwarzinger. Method inlining in the second stage compiler of the
CACAO VM. 2020.

[SKT07] Edwin Steiner, Andreas Krall, and Christian Thalinger. Adaptive inlining
and on-stack replacement in the CACAO virtual machine. In Proceedings of
the 5th International Symposium on Principles and Practice of Programming
in Java, PPPJ ’07, page 221–226, New York, NY, USA, 2007. Association
for Computing Machinery.

[SPE] SPECjvm 2008. https://www.spec.org/jvm2008/, last accessed on
2024-10-05.

[WW12] Christian Wimmer and Thomas Würthinger. Truffle: a self-optimizing
runtime system. In Proceedings of the 3rd Annual Conference on Systems,
Programming, and Applications: Software for Humanity, SPLASH ’12, page
13–14, New York, NY, USA, 2012. Association for Computing Machinery.

38

https://github.com/JLLVM/JLLVM
https://docs.oracle.com/javase/specs/index.html
https://docs.oracle.com/javase/specs/index.html
https://www.spec.org/jvm2008/

[WWW+13] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario
Wolczko. One vm to rule them all. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, Onward! 2013, page 187–204, New York, NY,
USA, 2013. Association for Computing Machinery.

39

	Kurzfassung
	Abstract
	Contents
	Introduction
	The CACAO VM
	On-Stack Replacement
	Motivation
	Aim of the Work

	Related Work
	CACAO
	On-Stack Replacement

	Background
	Existing OSR Implementation
	Replacement Points
	It's a Trap!
	How Compilers are Invoked
	Compiler2
	Compiler2 Stack Frame Layout

	OSR Implementation
	Float Registers
	Replacement Points
	Simplified SourceStates and Inlining
	Lowering and Recovery
	Operand Stack after Side Effects
	Jumping into Optimized Code
	Callee Saved Registers
	Preventing Excessive Deoptimizations
	Patching Callers

	Various bug fixes
	Debugging CACAO
	Basic Block Scheduling
	Handling of Dependencies
	Inlining
	LIR Changes
	Disabled Table and Lookupswitch
	Use after Free
	Phi Node Verification
	Constant Propagation
	Incorrect Spilling
	RegallocSpillAll Data Race
	New Instructions
	Throwing null
	Dominator Pass

	Evaluation
	Methodology
	Results
	Conclusion

	Future work
	OSR Improvements
	Compiler2 Improvements
	Breakpoints and Garbage Collection

	Detailed SpecJVM results
	Individual Scores
	Normalized Comparison

	Übersicht verwendeter Hilfsmittel
	Bibliography

